Bioaccessibility study of Calcium and Vitamin D3 co-microencapsulated in W/O/W double emulsions

Cristian Dima¹, Stefan Dima¹

¹ ”Dunarea de Jos” University of Galati, Romania

cristian.dima@ugal.ro
I. INTRODUCTION

1. Why "Bioaccessibility study"?
2. Why Calcium and Vitamin D3?
3. Why "co-microencapsulated" procedure?
4. Why W/O/W double emulsions?
1. Why "Bioaccessibility study"?

- *Bioaccessibility* (B^*) is the fraction of micronutrient *released* from the food matrix and *solubilized* within gastrointestinal fluids so that it can be absorbed;
- is a major factor limiting the bioavailability of micronutrients.

\[
F = F_C \cdot F_B \cdot F_A \cdot F_T
\]
2. Why Calcium and Vitamin D3?

Calcium is the most abundant mineral in the human body. **Calcium** is involved in many biochemical processes: nerve conductivity, muscle contraction, hormone and enzyme secretion.

Vitamin D (VD) was firstly identified as a vitamin (micronutrient) and now is recognized as a prohormone (precursor to seco-steroid hormone known as *calcitriol*);
3. Why ”co-microencapsulated” procedure?

- Ensure encapsulation in a single delivery system of two or more biocomponent;
- Ensure biocomponent sineering action.
- Provides biocomponent protection against physicochemical factors (temperature, oxygen, water, pH changes, light).
- Ensure the stability and controlled release of biocomponents when they pass through the gastrointestinal tract.
4. Why W/O/W double emulsions?

Double emulsions are colloidal systems that provide co-microencapsulation of lipophilic and hydrophilic components.
Scope and objectives

Scope: bioaccessibility study of calcium and vitamin D3 co-microencapsulated in W/O/W double emulsions.

Objectives

O1: Preparation of calcium and vitamin D3 double emulsions.

O2: Stabilization of double emulsions by introducing them into polymeric microspheres obtained by the ionotropic gelation process.

O3: Characterization of double emulsions and polymeric microspheres.

O4: Kinetic "in vitro" release study of calcium and vitamin D3 from polymeric microspheres.
II. METHODS AND RESULTS

O1. Preparation of $W_1/O/W_2$ double emulsions loaded with Ca and VD3

Step 1: Preparation of W_1/O emulsions

Oil phase (O)
- Linseed oil (50, 70 % w/w)
- Span 80 (HLB=4.3) (5% w/w)
- VD3 (0.02% w/w)

UltraTurrax (6400 rpm; 5 min.)

Internal Water phase (W1)
- Calcium source (calcium citrate, calcium gluconate)
- Distilled water

Ultrasonication (A=50%, P=180W; 1 min.)

Macroemulsion (W_1/O)

Ultrafin W_1/O emulsion
Step 2: Preparation of $W_1/O/ W_2$ double emulsions

External Water phase (W2)
- Tween 20 (0.5%)
- Sodium alginate 1.5% (w/w),
- Arabic gum 5% (w/w)
- Sodium azide 0.01% (w/w)
- Lactose 0.25M

W1/O emulsions

Slow stirring

600 rpm; 120 min.

Internal Aqueous phase (W1)

External aqueous phase (W2)

Oil droplet

$W_1/O/ W_2$ emulsions
O2. Stabilization of W/O/W emulsions by ionotropic gelation

Preparation of Alginate Microspheres

Alginate microspheres were prepared by dropping 50 mL W/O/W double emulsion through a syringe (needle size 22G) into 100 mL of a 0.1 M Zinc acetate solution. The microspheres obtained were kept for 2 h in 0.1 M Zinc acetate solution and stored in a 0.006 M ZnCl2 solution at 4 °C.
Chemical composition of W/O/W double emulsions loaded with Ca and VD3

<table>
<thead>
<tr>
<th>Compounds</th>
<th>DE I</th>
<th>DE II</th>
<th>DE III</th>
<th>DE IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil phase</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linseed oil (g)</td>
<td>50</td>
<td>70</td>
<td>50</td>
<td>70</td>
</tr>
<tr>
<td>Span 80 (g)</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>VD3 (g)</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Internal aqueous phase (W₁)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca(2+) (g)</td>
<td></td>
<td>1.2(citrate)</td>
<td>1.2(citrate)</td>
<td>1.2(gluconate)</td>
</tr>
<tr>
<td>Distilled water (g) (add 100)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>External aqueous phase (W₂)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gum arabic (g)</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Tween 20 (g)</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Sodium alginat (g)</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Sodium azide (g)</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Lactose 0.25M (g)</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Distilled water (g) (add 100)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
O3. Characterization of double emulsions (W / O / W) and polymeric microspheres

Morphology and particle size determination

a) Morphology

(W/O/W)
Double emulsion II

(Alginate Microspheres)

b) Particle size determination

- W/O/W double emulsions: volume mean diameter was \(d = 21.5\pm0.12 \, \mu m \).
- Alginate microspheres: volume mean diameter was: \(d = 0.89\pm0.21 \, mm \).
Efficiency of the encapsulation

The efficiency of the encapsulation (EE%) has been calculated with the relation:

\[EE(\%) = \frac{M_{\text{Encapsulated}}}{M_0} \cdot 100 \]

- The encapsulation efficiency for W/O/W double emulsions is higher than for microspheres.
- Higher solubility of calcium citrate induces a loss of Ca ions in the aqueous solution.
- The vitamin D3 encapsulation efficiency increases with increasing oil content in the oil phase.
O4. Dynamic "in vitro" digestion model

- **Simulated saliva fluid (SSF)**
 - pH 6.8
 - Buffer solution
 - Salts
 - Mucin (3%wt)
 - Sample (Double emulsion/Microspheres)
 - Stirring 2 min (37°C)

- **Simulated gastric fluid (SGF)**
 - pH 2.5
 - NaCl
 - HCl
 - Pepsin
 - Shaking 2h (37°C)

- **Simulated intestinal fluid (SIF)**
 - pH 7
 - Ionic salts
 - Phosphate buffer
 - Porcine lipase
 - Stirring 2h (37°C)

- **Bolus sample**
 - W/O/W Double emulsions (confocal fluorescence microscopy)

- **Chyme sample**
 - Alginate microspheres (electronic microscopy)
Release of Ca and VD3 from W/O/W double emulsions and from alginate microspheres

- Kinetic curves of VD3 and Ca released from free double emulsions (DE) and entrapped in alginate microspheres (MS):
 - In double emulsions, the release rate of Ca is higher than the release rate of VD3;
 - In microspheres, the release rate of Ca is lower than in double emulsions due to Ca retention by alginat.

FFAs released under simulated small intestinal conditions (calculated by pH stat method) : DE-double emulsions; MS-alginate microspheres
Four W/O/W double emulsions loaded with Calcium and Vitamin D3 were prepared;

W/O/W double emulsions loaded with Calcium and Vitamin D3 were stabilized by incorporating them into sodium alginate microspheres;

The calcium encapsulation efficiency was less than of vitamin D3;

Digestion of W/O/W double emulsions and alginate microspheres was studied using dinamic ”in vitro” digestion model;

The release rate of free fatty acids obtained by enzymatic hydrolysis of glycerides was measured;

The percentage of free fatty acids released increases with the increase in the oil content of the W/O/W double emulsions;

The release rate of free fatty acids from the microspheres is lower than from double emulsions due to limited lipase access to the oil phase.
This work has benefited from the financial and technical support of the project nr. GI02/01.03.2018, financed by Dunarea de Jos University of Galati, Romania.