Calibration of on-line NIR Moisture Measurement Systems in Food Production Processes

Euro Food Water 2010
Reims
Hartmut Federle
Calibration of on-line NIR Moisture Gauges in Food Production Processes

Contents

1. Installing on-line gauges
2. Estimation of total error in calibration
3. Gauge errors
4. Errors in reference oven method
5. Sampling errors
6. Example of total error in calibration
7. Summary
Installing on-line Gauges

Examples of moisture measurement

- Coffee
- Flour
- Cereals
- Ingredients
- Sugar
- Snack Foods
- Dairy Products
- Dried Fruits
- Tea
- Chocolate
- Animal foods
- Potato flakes
- Pasta, Noodles
- Breadcrumbs
- PET Foods
- Rice
- Confectionery
- Biscuits
- Starch
- Cheese
- Nuts
Benefits by using on-line gauges

- Increase yield
- Avoid over drying
- Improve product quality
- Reduced need for laboratory analysis
- Increase productivity
Installing on-line Gauges

Expectations by user

- Results are based on local reference method
- Reliable data
- No need for re-calibrating after installation
- Easy handling of the instrument
- Improved product quality by closed loop control
- No down time
Installing on-line Gauges

Calibration – why?

- Results are different from lab values
- Product shows different behaviour
- New developed product
- Process changes
- Gauge problem
Sources of errors

- Gauge itself
 linearity error of the gauge

- Reference laboratory method
 error in the method and procedure itself

- Sampling error
 not collecting the representative samples
Estimation of Total Error in Calibration

Total Variance in NIR Calibration

\[\text{SEP}^2_{\text{total}} = S^2_{\text{gauge}} + S^2_{\text{sampling}} + S^2_{\text{reference}} \]

\[\text{SEP} = \text{Standard Error of Prediction} \]
Reasons for re-calibrating

- Gauge design
- Environmental conditions
- Product or process changes
Critical factors for gauge design

- Temperature drift
- Selecting the right wavelengths for application
- Best algorithm for the parameter
- Changes due to source lamp variations
- Robustness of the gauge
- No down time
- Influence on pass height variations
Critical factors to design for environmental conditions

- Ambient light
- Humidity of the air gap
- Temperature and dust
Critical factors to product or process changes

- Seasonal variations
- Variations in particle size
- Irregular moisture distribution from top to bottom
Improving Gauge Design

<table>
<thead>
<tr>
<th>Problem</th>
<th>Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short term moisture variations in product</td>
<td>Larger patch size up to 60 mm</td>
</tr>
<tr>
<td>Signal to noise ratio</td>
<td>Increased scanning speed up to 8000 scans/min</td>
</tr>
<tr>
<td>Improve stability</td>
<td></td>
</tr>
<tr>
<td>Filters and algorithms</td>
<td>Up to 10 filters to measure fat and protein at the same time</td>
</tr>
<tr>
<td>Easier handling for user</td>
<td>Pre-calibrated gauges and on-line help for calibration - trim function - sampling function</td>
</tr>
</tbody>
</table>
On-line moisture applications

<table>
<thead>
<tr>
<th>Product</th>
<th>Typical Range %</th>
<th>Typical Accuracy %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cereals</td>
<td>0 - 5</td>
<td>0.1</td>
</tr>
<tr>
<td>Snack foods</td>
<td>0 – 25</td>
<td>0.1 – 0.3</td>
</tr>
<tr>
<td>Biscuits / Cookies</td>
<td>1.5 - 2.5</td>
<td>0.1</td>
</tr>
<tr>
<td>Non-dairy creamer</td>
<td>0 - 5</td>
<td>0.1</td>
</tr>
<tr>
<td>Chocolate</td>
<td>0 - 5</td>
<td>0.1</td>
</tr>
<tr>
<td>Salt</td>
<td>0 - 2</td>
<td>0.05</td>
</tr>
<tr>
<td>Tea</td>
<td>0 - 80</td>
<td>0.1 – 1.0</td>
</tr>
</tbody>
</table>

23. März 2010
Factors of influence

- Drying temperature
- Drying time
- Product structure
- Distribution of the material
- Mass of the product sample
- No. of samples in the oven at a time
- Type of oven
- Weighing procedure
Estimated error in oven reference method

Sreference = +/- (0.1 – 0.3)% absolute error
Estimation of Sampling Error

Areas of influence

1. Gauge settings for sampling
2. Process conditions
3. Synchronizing gauge reading and sampling
4. Collect a representative sample from the line
Sampling Procedure

Steps for sampling

- Response time to 1 s
- Sampling time 10 s
- Evaluate product variations \bar{x}, s

- Process settings low, medium, high moisture
Sampling Procedure

Steps for sampling

- Collect samples within the preset 10 s
- Put samples in a plastic bag
- Standard deviation within expected magnitude?
- Transport to laboratory mixing in the closed bag
Application of NIR measurement

Moisture measurement in flour

Source: NDC Infrared Engineering
Example of total Error in Calibration

Total variance in calibration

Assumption: \[S_{\text{gauge}} = +/- 0.1 \% \]
\[S_{\text{reference}} = +/- 0.2 \% \]
\[S_{\text{sampling}} = +/- 0.3 \% \]

\[\text{SEP}^2 \text{ total} = S^2_{\text{gauge}} + S^2_{\text{sampling}} + S^2_{\text{reference}} \]

\[\text{SEP total} = +/- 0.374 \% \quad \text{(including sampling)} \]
\[\text{SEP total} = +/- 0.224 \% \quad \text{(without sampling)} \]

\text{SEP} = \text{Standard Error of Prediction}
Summary

- User should know about the errors in calibration
- Calibration has become easier
 - Pre-calibrated gauges
 - Trim adjustments
 - Sampling system
 - High stability by design
- Accuracy of on-line moisture systems
 - laboratory method on site,
 - sampling method
 - quality of gauge design