The influence of conductivity on Karl Fischer titration

Dr. Silke Grünke, Merck KGaA, Analytics & Reagents, Laboratory manager special reagents
26-27 March 2002, Reims
Introduction

- The mechanism of the Karl Fischer reaction

KF reaction: Oxidation of alkyl sulphite

1) \(\text{ROH} + \text{SO}_2 + \text{RN} \rightleftharpoons [\text{RNH}]\text{SO}_3\text{R} \)

2) \([\text{RNH}]\text{SO}_3\text{R} + \text{I}_2,\text{I}_3^- + \text{H}_2\text{O} + 2 \text{RN} \rightarrow [\text{RNH}]\text{SO}_4\text{R} + 2 [\text{RNH}]\text{I} \)

Competing equilibria in KF solutions:

Hydrogen sulphite can be oxidized in addition to alkyl sulphite:

\[
\begin{align*}
\text{HSO}_3^- + \text{I}_2,\text{I}_3^- & \rightarrow \text{SO}_3^- + \text{HI} \\
\text{HSO}_3^- + \text{ROH} & \rightarrow \text{ROSO}_2^- + \text{H}_2\text{O} \\
\text{HSO}_3^- + \text{H}_2\text{O} + \text{base} & \rightarrow \text{ROSO}_2\text{O}^- + \text{SO}_4^{2-} + \text{B-SO}_3
\end{align*}
\]
Introduction

- The composition of Karl Fischer solutions

Main Components

- \(I_2 \)
- \(SO_2 \)
- Base
- Solvent

Determines
- Stoichiometry
- Reaction rate
- Indication
- Dissolving properties

For buffering
- pH 5 – 8
- e.g. pyridine, imidazole

For stable one component reagents:
- Less reactive alcohol
 - e.g. DEGEE

For optimum KF titration:
- Reactive and polar alcohol
 - Methanol most suitable
Task
- Alternative solvents for methanol

Reagents for special applications
- for aldehydes & ketones (methanol free)
- dissolving properties adapted on samples
 e.g. addition of toluene, formamide, less polar alcohols

Reduction of toxic properties
- 2-methoxyethanol replaced by DEGEE
- substitution of methanol by ethanol or 1-propanol

without methanol:
observation overtitration, poor reproducibility
reasons ? lower reaction rate

indication problems !
The indication of the Karl Fischer titration
- principle

voltametrically or amperometrically
by polarizing a double platinum electrode

\[\text{U[mV]} \]
\[\text{U(stop)} \]
\[\text{t[s]} \]

excess of \(I_2/I_3^- \) leads to strong decrease of the resistance (voltage) at the endpoint

anode: \(2 I^- \rightarrow I_2 + 2 e^- \)
cathode: \(I_2 + 2 e^- \rightarrow 2 I^- \)
The indication of the Karl Fischer titration - influence of the solvent

electrochemical behaviour of KF solutions

- standard potential $E(I_2/I^-)$
- conductivity

1-propanol, $c(I_2) = 6 \times 10^{-4}$ mol/L

methanol, $c(I_2) = 6 \times 10^{-4}$ mol/L

Parameter $I(pol) - E(stop)$ adjusted on the solvent
one component titration
- comparison of the course of conductivity

start: low titration rate

no reactive components with fresh solvent

low reaction rate

low conductivity

titration: titration rate increases

addition of reagent

reaction rate increases

conductivity increases
Titration with different one component reagents and methanol

- Comparison of the course of conductivity

Type of solvent and base influence conductivity.
one component titration
- comparison of the course of conductivity

Titration with CombiTitrant 5 and several solvents

if indication problems:
adjust instrument parameters or composition of reagents

titration not possible
one component titration
- adjustment of composition of solvents

to increase conductivity of solvents

- addition of salts e.g. $R_N^+Br^-$

use of diluted KF solvents
- e.g. CombiSolvents, low concentrations of SO_2 and base

advantages:
- acceleration of reaction rate
- increased initial conductivity

ethanolic solvent for titrations with CombiTitrant (contains SO_2 and base)
one component titration
- adjustment of composition of solvents

water determination in oils & fats

- addition of toluene, chloroform, long chained alcohols
- solvent mixtures of less polarity
- consider influence on indication

Diluted KF solvents for one component titration of oils & fats

CombiSolvent oils for mineral oils
- contains toluene

CombiSolvent fats for food industry
- contains butyl acetate and decanol
Two component titration based on methanol and ethanol

start:
reactive components in KF solvent ensure optimum conditions

titration:
almost constant conductivity

ethanol:
conductivity decreases (factor 3 to methanol)
Coulometry

* - influence of conductivity

generation of iodine!

indication of the endpoint

conductivity more important than for volumetry

conductivity of catholyte (cell with frit) or working medium (fritless cell) decreases during determination

long chained alcohols, xylene or chloroform can be added

with diaphragm

addition of max. 40 % / volume to CombiCoulomat frit

higher robustness

without diaphragm

addition of max. 20 % / volume to CombiCoulomat fritless

high current at generator electrode

limit 5-6 mS/cm before current breaks down
Coulometry
- development of new reagents

goal ➔ increased conductivity
 especially for reagents for fritless cell

reached by ➔ addition of salts

problems ➔ solubility
 side reactions, stability
 formation of agglomerates

development activities in progress
Conclusion

A minimum conductivity is necessary for indicating the endpoint of KF titration.

replacement or reduction of methanol:

- consider influence on indication
- solvent determines \(E(I_2/I_3^-) \) and conductivity

adjustment of instrument parameters and/or compositions of reagents are necessary

e.g. advantage of diluted KF solvents for one component titration (apura CombiSolvents)

development of coulometric reagents with increased conductivity